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Abstract—Recent interest in superoscillations has led to theo-
retical investigations as well as proposed applications in imaging
and signal processing. In this paper, we elucidate the relationship
between superoscillation and the closely related concept of
superdirectivity. Key similarities and differences are highlighted,
which showcase windows of possibility for practical superoscil-
latory waveform design. Thereafter, through the example of
the Optical Super-Microscope — a far-field super-resolution
microscope, we demonstrate how established antenna array
theory can be leveraged to design a practical superoscillatory
filter, which enables far-field sub-diffraction optical imaging. We
end by reporting our current progress with the Optical Super-
Microscope and suggest future directions to improve its imaging
capability.

Index Terms—superoscillation, superdirectivity, sub-diffraction
imaging, super-resolution, antenna array.

I. INTRODUCTION

Superoscillations — a phenomenon whereby, over a finite
duration, a waveform oscillates with a faster frequency than
its highest constituent frequency components — has recently
seen increasing interest and applications. The mathematical
groundwork for superoscillatory waves was laid in a series
of works in the 1960’s by Slepian et al. [1], under the topic
of prolate spheroidal wave functions. It was later emphasized
by Aharonov et al. [2] and Berry [3], citing its manifes-
tation in quantum physical and optical systems. The field
has since undergone theoretical developments, with works
which suggest ways to construct superoscillations [3]–[5] and
analyze their properties [6]–[8]. In particular, Ferreira and
Kempf [4] studied superoscillations in relation to the Nyquist
and Shannon limits, and found that while superoscillatory
signals oscillate at a faster rate than the Nyquist limit, they
still abide by the Shannon limit. They also proved that high
energy sidebands must accompany the desired superoscillatory
features. The sideband energy (normalized with that of the
superoscillatory region) varies polynomially with the apparent
spectral width of the superoscillatory features, and exponen-
tially with its duration. By suggesting a need for very high
sensitivity, this work and others [9] undermined the practicality
of synthesizing superoscillatory waves and using them in
imaging systems.

Notwithstanding, sub-wavelength superoscillatory features,

vortices, hotspots and imaging devices have recently been
demonstrated [10]–[14]. However, these works and most re-
lated works exert very loose control on how the superoscil-
latory waveform behaves in the non-superoscillatory region
— in which most of the waveform’s energy must reside
[4]. Therefore, while these works demonstrate the feasibility
of generating superoscillatory waveforms and verify them in
controlled imaging experiments, they leave unanswered the
fundamental concern towards the sensitivity of superoscilla-
tory waveforms. An investigation in the direction of sideband
control, or better yet, a method for controlling the sidebands of
superoscillatory waveforms, should answer this concern from
a theoretical standpoint, and produce practical superoscillatory
patterns useful for imaging and signal processing.

In the present work, we describe a novel perspective on
superoscillations, which enhances our understanding on the
phenomenon and provides a useful tool for designing practical
superoscillatory waveforms. We achieve this through forming
a linkage between superoscillation and superdirectivity —
a concept developed some two decades prior to the first
mathematical works on superoscillation, but bears much re-
semblance to the latter. Through this linkage we showcase the
design of superoscillatory waveforms and filters by adapting
techniques for antenna design. Finally we describe the Optical
Super-Microscope, which exemplifies an intriguing imaging
application made possible by superdirective antenna inspired
superoscillatory filter design.

II. SUPEROSCILLATION AND SUPERDIRECTIVITY

The essence to the concept of superoscillation is that one
can generate sharp oscillations in a waveform despite having
limited support in the reciprocal (or Fourier) domain. Fig. 1a-
b shows a superposition of five complex exponentials with
frequencies less than or equal to 1 Hz, which clearly oscillates
faster than 1 Hz across a region of interest (ROI). This exem-
plifies a temporal superoscillation. Fig. 1c-d shows a similar
phenomenon in the spatial domain: several plane waves which
have transverse wave numbers kx ≤ k0 (where k0 = 2π/λ
is the wave number of free-space) are superimposed to form
a resultant spatial waveform which features a sub-wavelength
peak. In this case, superoscillatory wave components widen the
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TABLE I
SUMMARY OF COMPARISON BETWEEN SUPERDIRECTIVITY AND SPATIAL SUPEROSCILLATION

Superdirectivity Spatial Superoscillation

Domain of Limited Extent x kx

Domain of superoscillation kx x

Region of Interest (ROI) Propagating spectrum (|kx| ≤ k0) Designer defined
Sideband Location Evanescent spectrum (|kx| > k0) Outside ROI
Far-field mapping θ = cos−1(kx/k0), θ ε [0◦, 180◦] N/A
Breaks Diffraction Limit? Angular Spatial
Sideband visible? No Yes
Physical Effects of Sideband Increases Q of antenna; Take up a portion of waveform energy;

Increases sensitivity of antenna; Visible sideband may decrease functionality.
Induces metallic loss.

Fig. 1. Examples of superoscillatory waveforms. (a) Spectral weights for
five complex exponentials (two sinusoids and a DC offset), with frequencies
less than or equal to 1 Hz. (b) The superposition of the complex exponentials
displayed in (a), which features a temporary rapid oscillation at 1.85 Hz. The
green dashed curve is a 1.85 Hz cosine wave plotted for comparison. (c)
The spectral distribution of five plane waves with spatial frequency kx ≤
k0. (d) The superposition of plane waves shown in (c), which features a
superoscillatory sub-wavelength peak. A diffraction limited sinc (red, dashed)
is plotted for comparison.

effective local bandwidth across the ROI, which leads to the
formation of a sub-wavelength peak. It is in this manner that
superoscillation relates directly to the formation or retrieval
of sub-diffraction features using only propagating waves. This
stimulates promising application proposals for propagation
wave-based far-field sub-diffraction imaging.

Now we consider a superdirective antenna and its antenna
pattern, which directly relates to its plane-wave spectrum. To
simplify the discussion, we consider an antenna array of y-
directed line sources, which remain invariant in the y-direction
and are isotropic in the xz-plane. In such a case, the antenna
pattern is determined solely by its array factor, or equivalently
its line source excitation currents. Fig. 2a shows a diagram
of a five-element antenna array, with a total electrical size of
1 m, which is also the wavelength of radiation. Co-ordinates
and key geometries are shown in the figure. Fig. 2b shows

Fig. 2. Examples of a superdirective antenna. (a) A diagram showing the co-
ordinates and geometry for a five element antenna array. (b) Current weights
for five isotropic antennas, spaced 0.25 m apart (the wavelength is 1 m).
(c) Corresponding spatial frequency profile. The shaded region corresponds
to the stored wave region, while the unshaded region corresponds to the
superdirective antenna pattern, with θ given by (1). The diffraction-limited
sinc function for NA is plotted for comparison (red, dashed).

the current excitation pattern and Fig. 2c shows the antenna
pattern for a superdirective antenna, plotted in units of kx,
which relates to θ by

cos(θ) =
kx
k0
. (1)

Clearly, the domain θ ∈ [0◦, 180◦] maps to kx ∈ [−k0, k0].
In this way, the antenna pattern corresponds to the propagation
spectrum of the antenna’s excitation currents. However, in
addition to the propagation spectrum, the plane-wave spec-
trum also possesses an evanescent spectrum in the region
|kx| > k0. These evanescent wave components do not map
to a propagation angle, and hence reside in the near-field of
the antenna array. Consistent with Fig. 2b-c, it is known that
to achieve a sharp angular peak, a superdirective antenna must
assume very high near-field, or reactive field components [15].
This corresponds to high energy contents within its evanescent
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Fig. 3. Design for a Superoscillatory Filter. (a) Locations of zeros corresponding to a 1D superoscillatory waveform. Open circles denote zeros within the
ROI; dots denote zeros in the sideband region. (b) The plane-wave spectrum which corresponds to (a). (c) A spectrum of zero-order Bessel functions which
superimpose into a 2D waveform having the same null locations on the x-axis as the 1D superoscillatory waveform. (d) A 2D filter which corresponds to
(c). The outer radius of the outermost ring measures approximately 3.5 mm. (e) A plot of the 1D superoscillatory pattern and the x-cross-section of the 2D
counterpart, showing conformity in null locations, pulse width, sidelobe level and sideband amplitude.

spectrum, as shown in the shaded region of Fig. 2c.
Comparing Fig. 2b-c to Fig. 1c-d brings one immediate

conclusion: the superdirective antenna pattern in Fig. 2c cor-
responds to a superoscillatory waveform in the kx-domain.
This superoscillatory waveform is the Fourier transform of
the superdirective current distribution plotted in Fig. 2b; the
propagation spectrum of this superoscillatory waveform maps
to the antenna pattern through the mapping described by
(1). This relationship is true in general for all superdirective
antennas.

Table 1 lists a comparison between a superdirective plane-
wave spectrum and a spatial superoscillatory waveform, which
can be summarized as follows. The excitation current distri-
bution to a superdirective antenna has a plane-wave spectrum
which superoscillates in the kx-domain. The extent of the
current distribution is limited by the antenna size in the x-
domain. In the kx-domain its ROI is the propagating spectrum.
A kx-domain superoscillation can result in a narrow antenna
beam, which breaks the angular diffraction limit [16]–[18],
just as the spatial superoscillation can result in a narrow
peak which breaks the spatial diffraction limit [17], [18].
A key distinction between the two phenomenon is the fact
that superdirectivity involves a far-field mapping, whereby
free-space diffraction filters out the evanescent spectrum, and
renders the sideband invisible from the antenna pattern. This
is not the case for spatial superoscillations. High energy
sidebands are inseparable from the superoscillatory waveform,

and render the waveform sensitive in the following sense:
plane wave components of a spatial superoscillatory waveform
must delicately interfere and the signal noise level must be low
for superoscillatory features to be faithfully reproduced, which
are generally of low amplitude compared to the sideband. This
sense of waveform sensitivity is very different than that for
a superdirective antenna, where the high-energy evanescent
spectrum physically manifests itself as a strong reactive near-
field, which dissipates due to metallic loss, and hence under-
mines the efficiency (and hence gain) of the superdirective
antenna. This difference makes it possible to reduce the
sensitivity requirement of a spatial superoscillatory waveform
(or filter), and hence lead to practical implementations of
superoscillation-based imaging devices.

III. THE OPTICAL SUPER-MICROSCOPE

As an illustrative example, we describe our work in con-
structing the Optical Super-Microscope (OSM) — a far-field
super-resolution optical microsope [19]. Leveraging the rela-
tion between superdirectivity and superoscillations, we apply
Schelkunoff superdirective antenna design to obtain a set
of “excitation currents”. We then implement these excitation
currents as a modulation in the transverse k-domain. This
modulation results in a superoscillatory impulse response (or
point spread function) in the spatial domain, suitable for sub-
diffraction imaging applications.
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Fig. 3 shows a design procedure for the superoscillatory
filter. Fig. 3a shows the location of zeros on the z-plane.
Circles denote 12 zeros placed within the ROI, while dots
denote 50 zeros placed outside the ROI. While in superdirec-
tive antenna design, zeros are seldom placed outside the visible
region (equivalent to the ROI), the technique of zero placement
antenna design does not restrict the designer from placing
zeros in the invisible region. In designing superoscillatory
waveforms, the placement of zeros outside the ROI allows
some degree of control on sideband behaviour, while a higher
concentration of zeros within the ROI enables superoscillation
therein [20]. The zero locations in Fig. 3a correspond to the
plane-wave spectrum in Fig. 3b and the 1D superoscillation
waveform in Fig. 3e. To extend the waveform into a 2D
equivalent, a 2D modulation in the transverse k-domain is
designed with a superposition of zero order Bessel functions,
such that the radial nulls of the superimposed waveform
coincide with the x-domain nulls of its 1D counterpart. Fig.
3c shows the resulting Bessel function distribution, Fig. 3d
shows the corresponding 2D filter, while Fig. 3e plots a
cross-section of the 2D waveform on the x-axis alongside
the 1D superoscillatory waveform. The comparison in Fig. 3e
shows the preservation of key waveform specifications such
as the superoscillatory beamwidth, the extent of the ROI,
sidelobe ripples within the ROI, and the sideband amplitude.
This signifies the successful design of a 2D superoscillation
waveform.

The spectral weights, as displayed in Fig. 3d, are imple-
mented on a spatial light modulator (SLM), the LCD panel
size for which is as depicted in Fig. 3d. Two Fourier Trans-
forming (FT) lens sandwich the SLM to perform forward and
inverse Fourier transforms, such that the 2D superoscillation
waveform, shown in Fig. 3e, becomes the impulse response
(or point spread function) of the imaging system. The focal
length of the FT lenses (400 mm) forms the working distance
of the OSM; the half width of the SLM (3.5 mm) forms
the effective aperture of the OSM. Dividing the latter by the
former gives a numerical aperture of NA = 0.00864, which
for HeNe laser illumination (λ = 632.8 nm) corresponds to an
Abbé diffraction limit of

d =
λ

2NA
= 36.7 µm. (2)

While at present the numerical aperture is admittedly small,
proof-of-principle experiments have demonstrated the OSM’s
capability to perform far-field sub-diffraction imaging.

Fig. 4 shows our experimental results with the OSM. Fig.
4a shows an experimental image of a small hole 10 µm in
diameter. We observe that the superoscillatory sidebands are
separated from the sub-diffraction peak by a 150 µm distance.
This separation corresponds to the ROI of the superoscillatory
waveform design process. A circle of half that radius forms the
field of view (FOV) of the OSM: whenever objects are located
within the FOV, they can be faithfully imaged without spurious
interference with the high-intensity sideband. The sideband
intensity, clamped down by placement of zeros into the non-

Fig. 4. Experimental results for the OSM. (a) Experimentally measured PSF
of the OSM, featuring an isolated sub-diffraction peak in the ROI, and high-
intensity rings outside the ROI. (b) A close up on the sub-diffraction peak (top
panel), compared to the diffraction-limited peak (bottom panel). (c) A series
of close up images showing successful two-aperture resolution by the OSM
(top row). The same two apertures are not resolved by a diffraction-limited
imaging system with the same NA (bottom row). The apertures are 15 µm
in diameter. The edge-to-edge separations of the apertures, from left to right,
are 30 µm, 35 µm, 40 µm and 45 µm respectively. [19]

superoscillatory region, is about four times that of the central
peak. This does not pose serious problems with waveform
sensitivity. Fig. 4b shows a close up of the experimentally
measured central peak. This peak is clearly sharpened in
comparison to the diffraction-limited PSF — obtained by
replacing the superoscillatory filter with a uniform aperture
of the same size.

Fig. 4c shows results from a two-point characterization ex-
periment, which demonstrates the OSM’s ability to resolve two
closely-spaced circular apertures, which cannot be resolved
by a diffraction-limited system. When the two apertures are
horizontally separated by varying set of distances (increasing
from left to right), the top row shows successful resolution by
the OSM, while the bottom row shows, for the most part, un-
successful resolution by the diffraction-limited system. From
results from both the one-point and two-point characterization
experiments, the demonstrated OSM improves the minimal
resolvable lengths to about 70% of the diffraction-limit. Our
current research directions aim to improve the quality of the
superoscillatory filter, the extent of the FOV and the NA of
the OSM, in effort to develop the OSM into a practical tool
for far-field sub-wavelength optical imaging.

IV. CONCLUSION

In this paper we examined the close relationship between
the concepts of superoscillation and superdirectivity. Upon
concluding that superdirectivity is a case of generating super-
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oscillatory waveforms in the transverse k-domain, we lever-
aged superdirective antenna design techniques to help design
superoscillatory waveforms in the spatial domain which are
practical for implementation in sub-diffraction imaging de-
vices. As one example, we described our progress in building
an Optical Super-Microscope, which uses a superoscillatory
filter to achieve far-field sub-diffraction optical imaging. Our
current proof-of-principle prototype achieves sub-diffraction
imaging with a minimum resolvable distance 70% that of the
diffraction limit. We also commented on current directions
towards developing the OSM for sub-wavelength far-field
imaging.
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